Chapter 6 of Richard Dawkins book "The Blind Watchmaker"
Chance, luck, coincidence, miracle.

One of the main topics of this chapter is miracles and what we mean by them. My thesis will be that events that we commonly call miracles are not supernatural, but are part of a spectrum of more-or-less improbable natural events. A miracle, in other words, if it occurs at all, is a tremendous stroke of luck. Events don't fall neatly into natural events versus miracles.

There are some would-be events that are too improbable to be contemplated, but we can't know this until we have done a calculation. And to do the calculation, we must know how much time was available, more generally how many opportunities were available for the event to occur. Given infinite time, or infinite opportunities, anything is possible. The large numbers proverbially furnished by astronomy, and the large timespans characteristic of geology, combine to turn topsy-turvy our everyday estimates of what is expected and what is miraculous. I shall build up to this point using a specific example which is the other main theme of this chapter. This example is the problem of how life originated on Earth. To make the point clearly, I shall arbitrarily concentrate on one particular theory of the origin of life, although any one of the modern theories would have served the purpose.

We can accept a certain amount of luck in our explanations, but not too much. The question is, how much? The immensity of geological time entitles us to postulate more improbable coincidences than a court of law would allow but, even so, there are limits. Cumulative *election is the key to all our modern explanations of life. It strings a *Mes of acceptably lucky events ~random mutations) together in a nonrandom sequence so that, at the end of the sequence, the finished product carries the illusion of being very very lucky indeed, far too improbable to have come about by chance alone, even ggivenn aa timespan millions of times longer than the age of the universe so far. Cumulative selection is the key but it had to get started, and we cannot escape the need to postulate a single-step chance event in the origin of cumulative selection itself.

And that vital first step was a difficult one because, at its heart, there lies what seems to be a paradox. The replication processes that we know seem to need complicated machinery to work. In the presence of a replicase 'machine tool', fragments of RNA will evolve, repeatedly and convergently, towards the same endpoint, an endpoint whose 'probability' seems vanishingly small until you reflect on the poWer of cumulative selection. But we have to assist this cumulative selection to get started. It won't go unless we provide a catalyst, such as the replicase 'machine tool' of the previous chapter. And that catalyst, it seems, is unlikely to come into existence spontaneously, except under the direction of other RNA molecules. DNA molecules replicate in the complicated machinery of the cell, and written words replicate in Xerox machines, but neither seem capable of spontaneous replication in the absence of their supporting machinery. A Xerox machine is capable of copying its own blueprints, but it is not capable of springing spontaneously into existence. Biomorphs readily replicate in the environment provided by a suitably written computer program, but they can't write their own program or build a computer to run it. The theory of the blind watchmaker is extremely powerful given that we are allowed to assume replication and hence cumulative selection. But if replication needs complex machinery, since the only way we know for complex machinery ultimately to come into existence is cumulative selection, we have a problem.

Certainly the modem cellular machinery, the apparatus of DNA replication and protein synthesis, has all the hallmarks of a highly evolved, specially fashioned machine. We have seen how staggeringly impressive it is as an accurate data storage device. At its own level of ultra-miniaturization, it is of the same order of elaborateness and complexity of design as the human eye is at a grosser level. All who have given thought to the matter agree that an apparatus as complex as the human eye could not possibly come into existence through single-step selection. Unfortunately, the same seems to be true of at least parts of the apparatus of cellular machinery whereby DNA replicates itself, and this applies not just to the cells of advanced creatures like ourselves and amoebas, but also to relatively more primitive creatures like bacteria and blue-green algae.

So, cumulative selection can manufacture complexity while single-step selection cannot. But cumulative selection cannot work unless there is some minimal machinery of replication and replicator power, and the only machinery of replication that we know seems too complicated to have come into existence by means of anything less than many generations of cumulative selection! Some people see this as a fundamental flaw in the whole theory of the blind watchmaker. They see it as the ultimate proof that there must originally have been a designer, not a blind watchmaker but a far-sighted supernatural watchmaker. Maybe, it is argued, the Creator does not control the day-to-day succession of evolutionary events; maybe he did not frame the tiger and the lamb, maybe he did not make a tree, but he did set up the original machinery of replication and replicator power, the original machinery of DNA and protein that made cumulative selection, and hence all of evolution, possible.

This is a transparently feeble argument, indeed it is obviously selfdefeating. Organized complexity is the thing that we are having difficulty in explaining. Once we are allowed simply to postulate organized complexity, if only the organized complexity of the DNA/ protein replicating engine, it is relatively easy to invoke it as a generator of yet more organized complexity. That, indeed, is what most of this book is about. But of c6urse any God capable of intelligently designing something as complex as the DNA/protein replicating machine must have been at least as complex and organized as that machine itself. Far more so if we suppose him additionally capable of such advanced functions as listening to prayers and forgiving sins. To explain the origin of the DNA/protein machine by invoking a supernatural Designer is to explain precisely nothing, for it leavesunexplained the origin of the Designer. You have to say something like 'God was always there', and if you allow yourself that kind of lazy way out, you might as well just say 'DNA was always there', or 'Life was always there', and be done with it.

The more we can get away from miracles, major improbabilities, fantastic coincidences, large chance events, and the more thoroughly we can break large chance events up into a cumulative series of small chance events ' the more satisfying to rational minds our explanations will be. But in this chapter we are asking how improbable, how miraculous, a single event we are allowed to postulate. What is the largest single event of sheer naked coincidence, sheer unadulterated miraculous luck, that we are allowed to get away with in our theories, and still say that we have a satisfactory explanation of life? In order for a monkey to write 'Methinks it is like a weasel' by chance, it needs a very large amount of luck, but it is still measurable. We calculated the odds against it as about 10 thousand million million million million million million (1040) to 1 against. Nobody can really comprehend or imagine such a large number, and we just think of this degree of improbability as synonymous with impossible. But although we can't comprehend these levels of improbability in our minds, we shouldn't just run away from them in terror. The number 10` may be very large but we can still write it down, and we can still use it in calculations. There are, after all, even larger numbers: 1046, for instance, is not just larger; you must add 10` to itself a million times in order to obtain 1046. What if we could somehow muster a gang of 1016 monkeys each with its own typewriter? Why, lo and behold, one of them would solemnly type 'Methinks it is like a weasel', and another would almost certainly type 'I think therefore I am'. The problem is, of course, that we couldn't assemble that many monkeys. If all the matter in the universe were turned into monkey flesh, we still couldn't get enough monkeys. The miracle of a monkey typing 'Methinks it is like a weasel' is quantitatively too great, measurably too great, for us to admit it to our theories about what actually happens. But we couldn't know this until we sat down and did the calculation.

So, there are some levels of sheer luck, not only too great for puny human imaginations, but too great to be allowed in our hard-headed calculations about the origin of life. But, to repeat the question, how great a level of luck, how much of a miracle, are we allowed to postulate? Don't let's run away from this question just because large numbers are involved. It is a perfectly valid question, and we can at least write down what we would need to know in order to calculate the answer.

Now here is a fascinating thought. The answer to our question - of how much luck we are allowed to postulate - depends upon whether our planet is the only one that has life, or whether life abounds all around the universe. The one thing we know for certain is that life has arisen once, here on this very planet. But we have no idea at all whether there is life anywhere else in the universe. It is entirely possible that there isn't..Some people have calculated that there must be life elsewhere, on the following grounds (1 won't point out the fallacy until afterwards). There are probably at least 1020 (i.e. loo billion billion) roughly suitable planets in the universe. We know that life has arisen here, so it can't be all that improbable. Therefore it is almost inescapable that at least some among all those billions of billions of other planets have life.

The flaw in the argument lies in the inference that, because life has arisen here, it can't be too terribly improbable. You will notice that this inference contains the built-in assumption that whatever went on on Earth is likely to have gone on elsewhere in the universe, and this begs the whole question. In other words, that kind of statistical argument, that there must be life elsewhere in the universe because there is life here, builds in, as an assumption, whatlit is setting out to prove. This doesn't mean that the conclusion that life exists all around the universe is necessarily wrong. My guess is that it is probably right. It simply means that that particular argument that led up to it is no argument at all. It is just an assumption.

Let us, for the sake of discussion, entertain the alternative assumption that life has arisen only once, ever, and that was here on Earth. It is tempting to object to this assumption on the following emotional grounds. Isn't there something terribly medieval about it? Doesn't it recall the time when the church taught that our Earth was the centre of the universe, and the stars just little pinpricks of light set in the sky for our delight (or, even more absurdly presumptuous, that the stars go out of their way to exert astrological influences on our little lives)? How very conceited to assume that, out of all the billions of billions of planets in the universe, our own little backwater of a world, in our own local backwater of a solar system, in our own local backwater of a galaxy, should have been singled out for life? Why, for goodness sake, should it have been our planet?

I am genuinely sorry, for I am heartily thankful that we have escaped from the small-mindedness of the medieval church and I despise modem astrologers, but I am afraid that the rhetoric about backwaters in the previous paragraph is just empty rhetoric. It is entirely possible that our backwater of a planet is literally the only one that has ever borne life. The point is that if there were only one planet that had ever borne life, then it would have to he our planet, for the very good reason that 'we' are here discussing the question! If the origin of life is such an improbable event that it happened on only one planet in the universe, then our planet has to be that planet. So, we can't use the fact that Earth has life to conclude that life must be probable enough to have arisen on another planet. Such an argument would be circular. We have to have some independent arguments about how easy or difficult it is for life to originate on a planet, before we can even begin to answer the question of how many other planets in the universe have life.

But that isn't the question we set out with. Our question was, how much luck are we allowed to assume in a theory of the origin of life on Earth? I said that the answer depends upon whether life has arisen only once, or many times. Begin by giving a name to the probability, however low it is, that life will originate on any randomly designated planet of some particular type. Call this number the spontaneous generation probability or SGI`. It is the SGP that we shall arrive at if we sit down with our chemistry textbooks, or strike sparks through plausible mixtures of atmospheric gases in our laboratory, and calculate the odds of replicating molecules springing spontaneously into existence in a typical planetary atmosphere. Suppose that our best guess of the SGP is some very very small number, say one in a billion. This is obviously such a small probability that we haven't the faintest hope of duplicating such a fantastically lucky, miraculous event a's the origin of life in our laboratory experiments. Yet if we assume, as we are perfectly entitled to do for the sake of argument, that life has originated only once in the universe, it follows that we are allowed to postulate a very large amount of luck in a theory, because there are so many planets in the universe where life could have originated. if, as one estimate has it, there are 100 billion billion planets, this is 100 billion times greater than even the very low SGP that we postulated. To conclude this argument, the maximum amount of luck that we are allowed to assume, before we reject a particular theory of the origin of life, has odds of one in N, where N is the number of suitable planets in the universe. There is a lot hidden in that word'suitable', but let us put an upper limit of 1 in 100 billion billion for the maximum amount of luck that this argument entitles us to assume.

Think about what this means. We go to a chemist and say: get out your textbooks and your calculating machine; sharpen your pencil and your wits; fill your head with formulae, and your flasks with methane and ammonia and hydrogen and carbon dioxide and all the other gases that a primeval nonliving planet can be expected to have; cook them all up together; pass strokes of lightning through your simulated atmospheres, and strokes of inspiration through your brain; bring all your clever chemist's methods to bear, and give us your best chemist's estimate of the probability that a typical planet will spontaneously generate a self-replicating molecule. or, to put it another way, how long would we have to wait before random chemical events on the planet, random thermal jostling of atoms and molecules, resulted in a self-replicating molecule?

Chemists don't know the answer to this question. Most modem chemists would probably say that we'd have to wait a long time by the standards of a human lifetime, but perhaps not all that long by the standards of cosmological time. The fossil history. of earth suggests that we have about a billion years - one 'aeon', to use a convenient modern definition - to play with, for this is roughly the time that elapsed between the origin of the Earth about 4.5 billion years ago and the era of the first fossil organisms. But the point of our 'numbers of planets' argument is that, even if the chemist said that we'd have to wait for a 'miracle', have to wait a billion billion years - far longer than the universe has existed, we can still accept this verdict with equanimity. There are probably more than a billion billion available planets in the universe. If each of them lasts as long as Earth, that gives us about a billion billion billion planet-years to play with. That will do nicely! A miracle is translated into practical politics by a multiplication sum.

There is a concealed assumption in this argument. Well, actually there are lots, but there's one in particular that I want to talk about. This is that, once life (i.e. replicators and cumulative selection) originates at all, it always advances to the point where its creatures evolve enough intelligence to speculate about their origins. If this is not so, our estimate of the amount of luck that we are allowed to postulate must be reduced accordingly. To be more precise, the maximum odds against the origin of life on any one planet that our theories are allowed to postulate, is the number of available planets in the universe divided by the odds that life, once started, will evolve sufficient intelligence to speculate about its own origins.

It may seem a little strange that 'sufficient intelligence to speculate about its own origins' is a relevant variable. To understand why it is, consider an alternative assumption. Suppose that the origin of life was quite a probable event, but the subsequent evolution of intelligence was exceedingly improbable, demanding a huge stroke of luck. Suppose the origin of intelligence is so improbable that it has happened on only one planet in the universe, even though life has started on many planets. Then, since we know we are intelligent enough to discuss the question, we know that Earth must be that one planet. Now suppose that the origin of life, and the origin of intelligence given that life is there, are both highly improbable events. Then the probability of any one planet, such as Earth, enjoying both strokes of luck is the product of the two low probabilities, and this is a far smaller probability.

It is as though, in our theory of how we came to exist, we are allowed to postulate a certain ration of luck. This ration has, as its upper limit, the number of eligible planets in the universe. Given our ration of luck, we can then 'spend' it as a limited commodity over the course of our explanation of our own existence. if we use up almost all our ration of luck in our theory of how life gets started on a planet in not by looking at lots of particular theories, but by looking at one as an example of how the basic problem - how cumulative selection got its start - might be solved.

Now, which theory to choose as my representative sample? Most textbooks give greatest weight to the family of theories based on an organic 'primeval soup'. It seems probable that the atmosphere of Earth before the coming of life was like that of other planets which are still lifeless. There was no oxygen, plenty of hydrogen and water, carbon dioxide, very likely some ammonia, methane and other simple organic gases. Chemists know that oxygen-free climates like this tend to foster the spontaneous synthesis of organic compounds. They have set up in flasks miniature reconstructions of conditions on the early Earth. They have passed through the flasks electric sparks simulating lightning,' and ultraviolet light, which would have been much stronger before the Earth had an ozone layer shielding it from the sun's rays. The results of these experiments have been exciting. Organic molecules, some of them of the same general types as are normally only found in living things, have spontaneously assembled themselves in these flasks. Neither DNA nor RNA has appeared, but the building blocks of these large molecules, called purines and pyrimidines, have. So have the building blocks of proteins, amino acids. The missing link for this class of theories is still the origin of replication. The building blocks haven't come together to form a self-replicating chain like RNA. Maybe one day they will.

But, in any case, the organic primeval-soup theory is not the one I have chosen for my illustration of the kind of solution that we must look for. I did choose it in my first book, The Selfish Gene, so I thought that here I would fly a kite for a somewhat less-fashionable theory (although it recently has started gaining ground), which seems to me to have at least a sporting chance of being right. Its audacity is appealing, and it does illustrate well the properties that any satisfying theory of the origin of life must have. This is the 'inorganic mineral' theory of the Glasgow chemist Graham Caims-Sinith, first proposed 20 years ago and since developed and elaborated in three books, the latest of which, Seven Clues to the Origin of Life, treats the origin of life as a mystery needing a Sherlock Holmes solution.

Caims-Sinith's view of the DNA/protein machinery is that it probably came into existence relatively recently, perhaps as recently as three billion years ago. Before that there were many generations of cumulative selection, based upon some quite different replicating entities. Once DNA was there, it proved to be so much more efficient as a replicator, and so much more powerful in its effects on its own replication, that the original replication system that spawned it was cast off and forgotten. The modem DNA machinery, according to this view, is a late-comer, a recent usurper of the role of fundamental replicator, having taken over that role from an earlier and cruder replicator. There may even have been a whole series of such usurpations, but the original replication process must have been sufficiently simple to have come about through what I have dubbed 'single-step selection'.

Chemists divide their subject into two main branches, organic and inorganic. Organic chemistry is the chemistry of one particular element, carbon. Inorganic chemistry is all the rest. Carbon is important and deserves to have its own private branch of chemistry, partly because life chemistry is all carbon-chemistry, and partly because those same properties that make carbon-chemistry suitable for life also make it suitable for industrial processes, such as those of the plastics industry. The essential property of carbon atoms that makes them so suitable for life and for industrial synthetics, is that they join together to form a limitless repertoire of different kinds of very large molecules. Another element that has some of these same properties is silicon. Although the chemistry of modem Earth-bound life is all carbon-chemistry, this may not be true all over the universe, and it may not always have been true on this Earth. Caims-Sinith. believes that the original life on this planet was based on self-replicating inorganic crystals such as silicates. if this is true, organic replicators, and eventually DNA, must later have taken over or usurped the role.

He gives some arguments for the general plausibility of this idea of 'takeover'. An arch of stones, for instance, is a stable structure capable of standing for many years even if there is no cement to bind it. Building a complex structure by evolution is like trying to build a mortarless arch if you are allowed to touch only one stone at a time. Think about the task naively, and it can't be done. The arch will stand once the last stone is in place, but the intermediate stages are unstable. It's quite easy to build the arch, however, if you are allowed to subtract stones as well as add them. Start by building a solid heap of stones, then build the arch resting on top of this solid foundation. Then, when the arch is all in position, including the vital keystone at the top, carefully remove the supporting stones and, with a modicum of luck, the arch will remain standing. Stonehenge is incomprehensible until we realize that the builders used some kind of scaffolding, or perhaps ramps of earth, which are no longer there. We can see only the endproduct, and have to infer the vanished scaffolding. Similarly, DNA and protein are two pillars of a stable and elegant arch, which persists once all its parts simultaneously exist. It is hard to imagine it arising by any step-by-step process unless some earlier scaffolding has completely disappeared. That scaffolding must itself have been built by an earlier form of cumulative selection, at whose nature we can only guess. But it must have been based upon replicating entities with power over their own future.

Cairns-Srnith's guess is that the original replicators were crystals of inorganic materials, such as those found in clays and muds. A crystal is just a large orderly array of atoms or molecules in the solid state. Because of properties that we can think of as their 'shape', atoms and small molecules tend naturally to pack themselves together in a fixed and orderly manner. It is almost as though they ,want' to slot together in a particular way, but this illusion is just an inadvertent consequence of their properties. Their 'preferred' way of slotting together shapes the whole crystal. It also means that, even in a large crystal such as a diamond, any part of the crystal is exactly the same as any other part, except where there are flaws. If we could shrink ourselves to the atomic scale, we would see almost endless rows of atoms, stretching to the horizon in straight lines - galleries of geometric repetition.

Since it is replication we are interested in, the first thing we must know is, can crystals replicate their structure? Crystals are made of myriads of layers of atoms Jor equivalent), and each layer builds upon the layer below. Atoms (or ions; the difference needn't concern us) float around free in solution, but if they happen to encounter a crystal they have a natural tendency to slot into position on the surface of the crystal. A solution of common salt contains sodium ions and chloride ions jostling about in a more or less chaotic fashion. A crystal of common salt is a packed, orderly array of sodium ions alternating with chloride ions at right angles to one another. When ions floating in the water happen to bump into the hard surface of the crystal, they tend to stick. And they stick in just the right places to cause a new layer to be added to the crystal just like the layer below. So once a crystal gets started it grows, each layer being the same as the layer below.

Sometimes crystals spontaneously start to form in solution. At other times they have to be 'seeded', either by particles of dust or by small crystals dropped in from elsewhere. Cairns-Srnith invites us to perform the following experiment. Dissolve a large quantity of photographer's hypo' fixer in very hot water. Then let the solution cool down, being careful not to let any dust drop in. The solution is now Isupersaturated', ready and waiting to make crystals, but with no seed crystals to start the process going. I quote from Cairns-Smith's: "Seven Clues to the Origin of Life"

Carefully take the lid off the beaker, drop one tiny piece of 'hypo' crystal onto the surface of the solution, and watch amazed at what happens. Your crystal grows visibly: it breaks up from time to time and the pieces also grow ... Soon your beaker is crowded with crystals, some several centimetres long. Then after a few minutes it all stops. The magic solution has lost its power - although if you want another performance just re-heat and re-cool the beaker ... to be supersaturated means to have more dissolved than there ought to be ... the cold supersaturated solution almost literally did not know what to do. It had to he'told'by adding a piece of crystal that already had its units (billions and billions of them) packed together in the way that is characteristic for 'hypo' crystals. The solution had to be seeded.

Some chemical substances have the potential to crystallize *in two alternative ways. Graphite and diamonds, for instance, are both crystals of pure carbon. Their atoms are identical. The two substances differ from each other only in the geometric pattern with which the carbon atoms are packed. In diamonds, the carbon atoms are packed in a tetrahedral pattern which is extremely stable. This is why diamonds are so hard. In graphite the carbon atoms are arranged in flat hexagons layered on top of each other. The bonding between layers is weak, and they therefore slide over each other, which is why graphite feels slippery and is used as a lubricant. Unfortunately you can't crystallize diamonds out of a solution by seeding them, as you can with hypo. If you could, you'd be rich; no on second thoughts you wouldn't, because any fool could do the same.

Now suppose we have a supersaturated solution of some substance, like hypo in that it was eager to crystallize out of solution, and like carbon in that it was capable of crystallizing in either of two ways. One way might be somewhat like graphite, with the atoms arranged in layers, leading to little flat crystals; while the other way gives chunky, diamond-shaped crystals. Now we simultaneously drop into our supersaturated solution a tiny flat crystal and a tiny chunky crystal. We can describe what would happen in an elaboration of Cairns-Stnith's description of his hypo experiment. You watch amazed at what happens. Your two crystals grow visibly: they break up from time to time and the pieces also grow. Flat crystals give rise to a population of flat crystals. Chunky crystals give rise to a population of chunky crystals. If there is any tendency for one type of crystal to grow and split more quickly than the other, we shall have a simple kind of, natural selection. But the process still lacks a vital ingredient in order to give rise to evolutionary change. That ingredient is hereditary variation, or something equivalent to it. Instead of just two types of crystal, there must he a whole range of minor variants that form lineages of like shape, and that sometimes 'mutate' to produce new shapes. Do real crystals have something corresponding to hereditary mutation?

Clays and muds and rocks are made of tiny crystals. They are abundant on Earth and probably always have been. When you look at the surface of some types of clay and other minerals with a scanning electron microscope you see an amazing and beautiful sight. Crystals grow like rows of flowers or cactuses, gardens of inorganic rose petals, tiny spirals like cross-sections of succulent plants, bristling organ pipes, complicated angular shapes folded as if in miniature crystalline origami, writhing growths like worm casts or squeezed toothpaste. The ordered patterns ecome even more stri ing at greater eve s o magnification. At levels that betray the actual position of atoms, the surface of a crystal is seen to have all the regularity of a machinewoven piece of herringbone tweed. But - and here is the vital point there are flaws. Right in the middle of an expanse of orderly herringbone there can be a patch, identical to the rest except that it is twisted round at a different angle so that the 'weave' goes off in another direction. Or the weave may he in the same direction, but each row has 'slipped' half a row to one side. Nearly all naturally occurring crystals have flaws. And once a flaw has appeared, it tends to be copied as subsequent layers of crystal encrust themselves on top of it.

Flaws can occur anywhere over the surface of a crystal. If you like thinking about capacity for information storage (1 do), you can imagine the enormous number of different patterns of flaws that could be created over the surface of a crystal. All those calculations about packing the New Testament into the DNA of a single bacterium could be done just as impressively for almost any crystal. What DNA has over normal crystals is a means by which its information can be read. Leaving aside the problem of read-out, you could easily devise an arbitrary code whereby flaws in the atomic structure of the crystal denote binary numbers. You could then pack several New Testaments into a mineral crystal the size of a pin's head. On a larger scale, this is essentially how music information is stored on the surface of a laser ('compact') disc. The musical notes are converted, by computer, into binary numbers. A laser is used to etch a pattern of tiny flaws in the otherwise glassy smooth surface of the disc. Each little hole etched corresponds to a binary 1 (or a 0, the labels are arbitrary). When you play the disc, another laser beam 'reads' the pattern of flaws, and a special-purpose computer built into the player turns the binary numbers back into sound vibrations, which are amplified so that you can hear them.

Although laser discs are used today mainly for music, you could pack the whole Encyclopaedia Britannica onto one of them, and read it out using the same laser technique. Flaws in crystals at the atomic level are far smaller than the pits etched in a laser disc's surface, so crystals can potentially pack more information into a given area. Indeed DNA molecules, whose capacity for storing information has already impressed us, are something close to crystals themselves. Although clay crystals theoretically could store the same prodigious quantities of information as DNA or laser discs can, nobody is suggesting that they ever did. The role of clay and other mineral crystals in the theory is to act as the original 'low-tech, replicators, the ones that were eventually replaced by high-tech DNA. They form spontaneously in the waters of our planet without the elaborate ,machinery' that DNA needs; and they develop flaws spontaneously, some of which can be replicated in subsequent layers of crystal. If fragments of suitably flawed crystal later broke away, we could imagine them acting as 'seeds' for new crystals, each one 'inheriting' its lparent's' pattern of flaws.

So, we have a speculative picture of mineral crystals on the primeval Earth showing some of the properties of replication, multiplication, heredity and mutation that would have been necessary in order for a form of cumulative selection to get started. There is still the missing ingredient of 'power': the nature of the replicators must somehow have influenced their own likelihood of being replicated. When we were talking about replicators in the abstract, we saw that 'power' might simply be direct properties of the replicator itself, intrinsic properties like 'stickiness'. At this elementary level, the name 'power' seems scarcely justified. I use it only because of what it can become in later stages of evolution: the power of a snake's fang, for instance, to propagate (by its indirect consequences on snake survival) DNA coding for fangs. Whether the original low-tech replicators were mineral crystals or organic direct forerunners of DNA itself, we may guess that the ,power' they exercised was direct and elementary, like stickiness. Advanced levers of power, like a snake's fang or an orchid's flower, came far later.

What might 'power' mean to a clay? What incidental properties of the clay could influence the likelihood that it, the same variety of clay, would be propagated around the countryside? Clays are made from chemical building blocks such as silicic acid and metal ions, which are in solution in rivers and streams having been dissolved - 'weathered'- out of rocks further upstream. If conditions are right they crystallize out of solution again downstream, forming clays. (Actually the ,stream', in this case, is more likely to mean the seeping and trickling of the groundwater than a rushing open river. But, for simplicity, I shall continuel to' use i the! general lword stream.) Whether or not a particular type of clay crystal is allowed to build up depends, among other things, upon the rate and pattern of flow of the stream. But deposits of clay can also influence the flow of the stream. They do this inadvertently by changing the level, shape and texture of the ground through which the water is flowing. Consider a variant of clay that just happens to have the property of reshaping the structure of the soil so that the flow speeds up. The consequence is that the clay concerned gets washed away again. This kind of clay, by definition, is not very 'successful'. Another unsuccessful clay would be one that changed the flow in such a way that a rival variant of clay was favoured.

We aren't, of course, suggesting that clays 'want' to go on existing. Always we are talking only about incidental consequences, events which follow from properties that the replicator just happens to have. Consider yet another variant of clay. This one happens to slow down the flow in such a way that future deposition of its own kind of clay is enhanced. Obviously this second variant will tend to become common, because it happens to manipulate streams to its own 'advantage'. This will be a 'successful' variant of clay. But so far we are dealing only with single-step selection. Could a form of cumulative selection get going?

To speculate a little further, suppose that a variant of a clay improves its own chances of being deposited, by damming up streams. This is an inadvertent consequence of the peculiar defect structure of the clay. In any stream in which this kind of clay exists, large, stagnant shallow pools form above dams, and the main flow of water is diverted into a new course. In these still pools, more of the same kind of clay is laid down. A succession of such shallow pools proliferates along the length of any stream that happens to be 'infected' by seeding crystals of this kind of clay. Now, because the main flow of the stream is diverted, during the dry season the shallow pools tend to dry up. The clay dries and cracks in the sun, and the top layers are blown off as dust. Each dust particle inherits the characteristic defect structure of the parent clay that did the damming, the structure that gave it its damming properties. By analogy with the genetic information raining down on the canal from my willow tree, we could say that the dust carries 'instructions'for how to dam streams and eventually make more dust. The dust spreads far and wide in the wind, and there is a good chance that some particles of it will happen to land in another stream, hitherto not 'infected' with the seeds of this kind of dam-making clay. Once infected by the right sort of dust, a new stream starts to grow crystals of dam-making clay, and the whole depositing, damming, drying, eroding cycle begins again.

To call this a 'life' cycle would he to beg an important question, but it is a cycle of a sort, and it shares with true life cycles the ability to initiate cumulative selection. Because streams are infected by dust ,seeds' blown from other streams, we can arrange the streams in an order of 'ancestry' and 'descent'. The clay that is damming up pools in stream B arrived there in the form of dust crystals blown from stlearn A. Eventually, the pools of stream B will dry up and make dust, which will infect streams F and P. With respect to the source of their dammaking clay, we can arrange streams into 'family trees'. Every infected stream has a 'parent' stream, and it may have more than one 'daughter' stream. Each stream is analogous to a body, whose 'development' is influenced by dust seed 'genes', a body that eventually spawns new dust seeds. Each 'generation' in the cycle starts when seed crystals break away from the parent stream in the form of dust. The crystalline structure of each particle of dust is copied from the clay in the parent stream. It passes on that crystalline structure to the daughter stream, where it grows and multiplies and finally sends 'seeds'out again.

The ancestral crystal structure is preserved down the generations unless there is an occasional mistake in crystal growth, an occasional alteration in the pattern of laying down of atoms. Subsequent layers of the same crystal will copy the same flaw, and if the crystal breaks in two it will give rise to a sub-population of altered crystals. Now if the alteration makes the crystal either less or more efficient in the damming/dryinglerosion cycle, this will affect how many copies it has in subsequent 'generations'. Altered crystals might, for instance, be more likely to split ('reproduce'). Clay formed from altered crystals might have greater damming power in any of a variety of detailed ways. It might crack more readily in a given amount of sun. It might crumble into dust more readily. The dust particles might be better at catching the wind, like fluff on a willow seed. Some crystal types might induce a shortening of the 'life cycle', consequently a speeding up of their 'evolution'. There are many opportunities for successive 'generations' to become progressively 'better' at getting passed to subsequent generations. In other words, there are many opportunities for rudimentary cumulative selection to get going.

These little flights of fancy, embellishments of Cairns-Smith's own, concern only one of several kinds of mineral 'life cycle' that could have started cumulative selection along its momentous road. There are others. Different varieties of crystals might cam their passage to new streams, not by crumbling into dust 'seeds', but by dissecting their streams into lots of little strearnlets that spread around, eventually joining and infecting new river systems. Some varieties might engineer waterfalls that wear down the rocks faster, and hence speed into solution the raw materials needed to make new clays further downstream. Some varieties of crystal might better themselves by making conditions hard for 'rival' varieties that compete for raw materials. Some varieties might become 'predatory', breaking up rival varieties and using their elements as raw materials. Keep holding in mind that there is no suggestion of 'deliberate' engineerin& either here or in modem, DNA-based life. It is just that the world automatically tends to become full of those varieties of clay (or DNA) that happen to have properties that make them persist and spread themselves about.

Now to move on to the next stage of the argument. Some lineages of crystals might happen to catalyse the synthesis of new substances that assist in their passage down the 'generations'. These secondary substances would not (not at first, anyway) have had their own lineages of ancestry and descent, but would have been manufactured anew by each generation of primary replicators. They could be seen as tools of the replicating crystal lineages, the beginnings of primitive 'phenotypes'. Caims-Sinith believes that organic molecules were prominent among non-replicating 'tools' of his inorganic crystalline replicators. Organic molecules frequently are used in the commercial inorganic chemical industry because of their effects on the flow of fluids, and on the break-up or growth of inorganic particles: just the sorts of effects, in short, that could have influenced the 'success' of lineages of replicating crystals. For instance, a clay mineral with the lovely name montmorillonite tends to break up in the presence of small amounts of an organic molecule with the less-lovely name carboxymethyl cellulose. Smaller quantities of carboxymethyl cellulose, on the other hand, have just the opposite effect, helping to stick montmorillonite particles together. Tannins, another kind of organic molecule, are used in the oil industry to make muds easier to drill. If oil-drillers can exploit organic molecules to manipulate the flow and drillability of mud, there is no reason why cumulative selection should not have led to the same kind of exploitation by selfreplicating minerals.

At this point Caims-Sinith's theory gets a sort of free bonus of added plausibility. It so happens that other chemists, supporting more conventional organic 'primeval soup' theories, have long accepted that clay minerals would have been a help. To quote one of them (D. M. Anderson), 'It is widely accepted that some, perhaps many, of the abiotic chemical reactions and processes leading to the origin on Earth of replicating micro-organisms occurred very early in the history of Earth in close proximity to the surfaces of clay minerals and other inorganic substrates.' This writer goes on to list five 'functions' of clay minerals in assisting the origin of organic life, for instance 'Concentration of chemical reactants by adsorption'. We needn't spell the five out here, or even understand them. From our point of view, what matters is that each of these five 'functions' of clay minerals can he twisted round the other way. It shows the close association that can exist between organic chemical synthesis and clay surfaces. It is therefore a bonus for the theory that clay replicators synthesized organic molecules and used them for their own purposes.

Caims-Smith discusses, in more detail than I can accommodate here, early uses that his clay-crystal replicators might have had for proteins, sugars and, most important of all, nucleic acids like RNA. He suggests that RNA was first used for purely structural purposes, as oil drillers use tannins or we use soap and detergents. RNA-like molecules, because of their negatively charged backbones, would tend to coat the outsides of clay particles. This is getting us into realms of chemistry that are beyond our scope. For our purposes what matters is that RNA, or something like it, was around for a long time before it became self-replicating. When it finally did become self-replicatin& this was a device evolved by the mineral crystfil 'genes' to improve the efficiency of manufacture of the RNA (or similar molecule). But, once a new self-replicating molecule had come into existence, a new kind of cumulative selection could get going. Originally a side-show, the new replicators turned out to be so much more efficient than the original crystals that they took over. They evolved further, and eventually perfected the DNA code that we know today. The original mineral replicators were cast aside like worn-out scaffolding, and all modem life evolved from a relatively recent common ancestor, with a single, uniform genetic system and a largely uniform biochemistry.

In The Selfish Gene I speculated that we may now be on the threshold of a new kind of genetic takeover. DNA replicators built ,survival machines' for themselves - the bodies of living organisms including ourselves. As part of their equipment, bodies evolved onboard computers - brains. Brains evolved the capacity to communicate with other brains by means of language and cultural traditions. But the new milieu of cultural tradition opens up new possibilities for selfreplicating entities. The new replicators are not DNA and they are not clay crystals. They are patterns of information that can thrive only in brains or the artificially manufactured products of brains - books, computers, and so on. But, given that brains, books and computers exist, these new replicators, which I called memes to distinguish them from genes, can propagate themselves from brain to brain, from brain to book, from book to brain, from brain to computer, from computer to computer. As they propagate they can change - mutate. And perhaps ,mutant' memes can exert the kinds of influence that I am here calling treplicator power'. Remember that this means any kind of influence affecting their own likelihood of being propagated. Evolution under the influence of the new replicators - memic evolution - is in its infancy. It is manifested in the phenomena that we call cultural evolution. Cultural evolution is many orders of magnitude faster than DNAbased evolution, which sets one even more to thinking of the idea of 'takeover'. And if a new kind of replicator takeover is beginning, it is conceivable that it will take off so far as to leave its parent DNA (and its grandparent clay if Caims-Smith is right) far behind. If so, we may be sure that computers will be in the van.

Could it be that one far-off day intelligent computers will speculate about their own lost origins? Will one of them tumble to the heretical truth, that they have sprung from a remote, earlier form of life, rooted in organic, carbon chemistry, rather than the silicon-based electronic principles of their own bodies? Will a robotic Cairns-Srnith Write a book called Electronic Takeove.r~ Will he rediscover some electronic equivalent of the metaphor of the arch, and realize that computers could not have sprung spontaneously into existence but must have originated from some earlier process of cumulative selection? Will he go into detail and reconstruct DNA as a plausible early replicator, victim of electronic usurpation? And will he be far-sighted enough to guess that even DNA may itself have been a usurper of yet more remote and primitive replicators, crystals of inorganic silicates? If he is of a poetic turn of mind, will he even see a kind of justice in the eventual return to silicon-based life, with DNA no more than an interlude, albeit one that lasted longer than three aeons?

That is science fiction, and it probably sounds far-fetched. That doesn't matter. Of more immediate moment is that Cairns-Srnith's own theory, and indeed all other theories of the origin of life, may sound far-fetched to you and hard to believe. Do you find both Cairns-Srnith's clay theory, and the more orthodox organic primevalsoup theory, wildly improbable? Does it sound to you as though it would need a miracle to make randomly jostling atoms join together into a self-replicating molecule? Well, at times it does to me too. But let's look more deeply into this matter of miracles and improbability. By doing so, I shall demonstrate a point which is paradoxical but all the more interesting for that. This is that we should, as scientists, be even a little worried if the origin of life did not seem miraculous to our own human consciousness. An apparently (to ordinary human consciousness) miraculous theory is exactly the kind of theory we should be looking for in this particular matter of the origin of life. This argument, which amounts to a discussion of what we mean by a miracle, will occupy the rest of this chapter. In a way it is an extension of the argument we made earlier about billions of planets.

So, what do we mean by a miracle? A miracle is something that happens, but which is exceedingly surprising. If a marble statue of the Virgin Mary suddenly waved its hand at us we should treat it as a miracle, because all our experience and knowledge tells us that marble doesn't behave like that. I have just uttered the words 'May I be struck by lightning this minute'. If lightning did strike me in the same minute, it would be treated as a miracle. But actually neither of these two occurrences would be classified by science as utterly impossible. They would simply be judged very improbable, the waving statue much more improbable than the lightning. Lightning does strike people. Any one of us might be struck by lightning, but the probability is pretty low in any one minute (although the Guinness Book of Records has a charming picture of a Virginian man, nicknamed the human lightning conductor, recovering in hospital from his seventh lightning strike, with an expression of apprehensive bewilderment on his face). The only thing miraculous about my hypothetical story is the coincidence between my being struck by lightning and my verbal invocation of the disaster.

Coincidence means multiplied improbability. The probability of my being struck by lightning in any one minute of my life is perhaps 1 in 10 million as a conservative estimate. The probability of my inviting a lightning strike in any particular minute is also very low. I have just done it for the only time in the 23,400,000 minutes of my life so far, and I doubt if I'll do it again, so call these odds one in 25 million. To calculate the joint probability of the coincidence occurring in any one minute we multiply the two separate probabilities. For my rough calculation this comes to about one in 250 trillion. If a coincidence of this magnitude happened to me, I should call it a miracle and would watch my language in future. But although the odds against the coincidence are extremely high, we can still calculate them. They are not literally zero.

In the case of the marble statue, molecules in solid marble are continuously jostling against one another in random directions. The jostlings of the different molecules cancel one another out, so the whole hand of the statue stays still. But if, by sheer coincidence, all the molecules just happened to move in the same direction at the same moment, the hand would move. If they then all reversed direction at the same moment the hand would move back. In this way it is possible for a marble statue to wave at us. It could happen. The odds against such a coincidence are unimaginably great but they are not incalculably great. A physicist colleague has kindly calculated them for me. The number is so large that the entire age of the universe so far is too short a time to write out all the noughts! It is theoretically possible for a cow to jump over the moon with something like the same improbability. The conclusion to this part of the argument is that we can calculate our way into regions of miraculous improbability far greater than we can imagine as plausible.

Let's look at this matter of what we think is plausible. What we can imagine as plausible is a narrow band in the middle of a much broader spectrum of what is actually possible. Sometimes it is narrower than what is actually there. There is a good analogy with light. Our eyes are built to cope with a narrow band of electromagnetic frequencies (the ones we call light), somewhere in the middle of the spectrum from long radio waves at one end to short X-rays at the other. We can't see the rays outside the narrow light band, but we can do calculations about them, and we can build instruments to detect them. In the same way, we know that the scales of size and time extend in both directions far outside the realm of what we can visualize. Our minds can't cope with the large distances that astronomy deals in or with the small distances that atomic physics deals in, but we can represent those distances in mathematical symbols. Our minds can't imagine a time span as short as a picosecond, but we can do calculations about picoseconds, and we can build computers that can complete calculations within picoseconds. Our min& can't imagine a timespan as long as a million years, let alone th( thousands of millions of years that geologists routinely compute.

Just as our eyes can see only that narrow band of electromagnetic frequencies that natural selection equipped our ancestors to see, so our brains are built to cope with narrow bands of sizes and times. Presumably there was no need for our ancestors to cope with sizes and times outside the narrow range of everyday practicality, so our brains never evolved the capacity to imagine them. It is probably significant that our own body size of a few feet is roughly in the middle of the range of sizes we can imagine. And our own lifetime of a few decades is roughly in the middle of the range of times we can imagine.

We can say the same kind of thing about improbabilities and miracles.

Picture a graduated scale of improbabilities, analogous to the scale of sizes from atoms to galaxies, or to the "e of times from picoseconds to aeons. On the scale we mark off various landmark points. At the far left-hand end of the scale are events which are all but ce~, such as the probability that the sun will rise tomorrow - the subject of G. H. Hardy's halfpenny bet. Near this ' left-hand end of the scale are things that are only slightly improbable, such as shaking a double six in a single throw of a pair of dice. The odds of this happening are 1 in 36. I expect we've all done it quite often. Moving towards the right-hand end of the spectrum, another landmark point is the probability of a perfect deal in bridge, where each of the four players receives a complete suit of cards. The odds against this happening are 2,235,197,406,895,366,368,301,559,999 to 1. Let us call this one dealion, the unit of improbability. If something with an improbability of one dealion was predicted and then happened, we should diagriose a miracle unless, which is more probable, we suspected fraud. But it could happen with a fair deal, and it is far far far more probable than the marble statue's waving at us. Nevertheless, even this latter event, as we have seen, has its rightful place along the spectrum of events that could happen. It is measurable, albeit in units far larger than gigadealions. Between the double-six dice throw, and the perfect deal at bridge, is a range of more or less improbable events that do sometimes happen, including any one individual's being struck by lightnin& winning a big prize on the football pools, scoring a hole-inone at golf, and so on. Somewhere in this range, too, are those coincidences that give us an eerie spine-tingling feeling, like dreaming of a particular person for the first time in decades, then waking up to find that they died in the night. These eerie coincidences are very impressive when they happen to us or to one of our friends, but their improbability is measured ' in only picodealions.

Having constructed our mathematical scale of improbabilities, with its benchmark or landmark points marked on it, let us now turn a spotlight on that subrange of the scale with which we, in our ordinary thought and conversation, can cope. The width of the spotlight's beam is analogous to the narrow range of electromagnetic frequencies that our eyes can see, or to the narrow range of sizes or times, close to our own size and longevity, that we can imagine. On the spectrum of improbabilities, the spotlight turns out to illuminate only the narrow range from the left-hand end (certainty) up to minor miracles, like a hole-in-one or a dream that comes true. There is a vast range of mathematically calculable improbabilities way outside the range of the spotlight.

Our brains have been built by natural selection to assess probability and risk, just as our eyes have been built to assess electromagnetic wavelength. We are equipped to make mental calculations of risk and odds, within the range of improbabilities that would be useful in human life. This means risks of the order of, say, being gored by a buffalo if we shoot an arrow at it, being struck by lightning if we shelter under a lone tree in a thunderstorm, or drowning if we try to swim across a river. These acceptable risks are commensurate with our lifetimes of a few decades. If we were biologically capable of living for a million years, and wanted to do so, we should assess risks quite differently. We should make a habit of not crossing roads, for instance, for if you crossed a road every day for half a million years you would undoubtedly be run over.

Evolution has equipped our brains with a subjective consciousness of risk and improbability suitable for creatures with a lifetime of less than one century. Our ancestors have always needed to take decisions involving risks and probabilities, and natural selection has therefore equipped our brains to assess probabilities against a background of the short lifetime that we can, in any case, expect. If on some planet there are beings with a lifetime of a million centuries, their spotlight of comprehensible risk will extend that much farther towards the right-hand end of the continuum. They will expect to be dealt a perfect bridge hand from time to time, and will scarcely trouble to write home about it when it happens. But even they will blench if a marble statue waves at them, for you would have to live dealions of years longer than even they do to see a miracle of this magnitude.

What has all this to do with theories of the origin of life? Well, we began this argument by agreeing that Cairns-Smith's theory, and the primeval-soup theory, sound a bit far-fetched and improbable to us. We naturally feel inclined to reject these theories for that reason. But 'we', remember, are beings whose brains are equipped with a spotlight of comprehensible risk that is a pencil-thin beam illuminating the far left-hand end of the mathematical continuum of calculable risks. Our subjective judgement of what seems like a good bet is irrelevant to what is actually a good bet. The subjective judgement of an alien with a lifetime of a million centuries will be quite different. He will judge as quite plausible an event, -such as the origin of the first replicating molecule as postulated by some chemist's theory, which we, kitted up by evolution to move in a world of a few decades' duration, would judge to he an astounding miracle. How can we decide whose point of view is the right one, ours or the long-lived alien's?

There is a simple answer to this question. The long-lived alien's point of view is the right one for looking at the plausibility of a theory like Cairns-Smith's or the primeval-soup theory. This is because those two theories postulate a particular event - the spontaneous arising of a self -replicating entity - as occurring only once in about a billion years, once per aeon. One and a half aeons is about the time that elapsed between the origin of the Earth and the first bacteria-like fossils. For our decade-conscious brains, an event that happens only once per aeon is so rare as to seem a major miracle. For the long-lived alien, it will seem less of a miracle than a golf hole-in-one seems to us - and most of us probably know somebody who knows somebody who has scored a hole-in-one. In judging theories of the origin of life, the longflived alien's subjective timescale is the relevant one, because it is approximately the timescale involved in the origin of life. Our own subjective judgement about the plausibility of a theory of the origin of life is likely to be wrong by a factor of a hundred million.

In fact our subjective judgement is probably wrong by an even greater margin. Not only are our brains equipped by nature to assess risks of things in a short time; they are also equipped to assess risks of things happening to us personally, or to a narrow circle of people that we know. This is because our brains didn't evolve under conditions dominated by mass media. Mass reporting means that, if an improbable thing happens to anybody, anywhere in the world, we shall read about it in our newspapers or in the Guinness Book of Records. If an orator, anywhere in the world, publicly challenged the lightning to strike him if he lied, and it promptly did so, we should read about it and be duly impressed. But there are several billion people in the world to whom such a coincidence could happen, so the apparent coincidence is actually not as great as it seems. Our brains are probably equipped by nature to assess the risks of things happening to ourselves, or to a few hundred people in the small circle of villages within drumrange that our tribal ancestors could expect to hear news about. When we read in a newspaper about an amazing coincidence happening to somebody in Valparaiso or Virginia, we are more impressed by it than we should be. More impressed by a factor of perhaps a hundred million, if that is the ratio between the world population surveyed by our newspapers, and the tribal population about whom our evolved brains ,expect, to hear news.

This 'population calculation' is also relevant to our judgement of the plausibility of theories of the origin of life. Not because of the population of people on Earth, but because of the population of planets in the universe, the population of planets where life could have originated. This is just the argument we met earlier in this chapter, so there is no need to dwell on it here. Go back to our mental picture of a graduated scale of improbable events with its benchmark coincidences of bridge hands and dice throws. On this graduated scale of dealions and microdealions, mark the following three new points. Probability of life arising on a planet (in, say, a billion years), if we assume that life arises at a rate of about once per solar system. Probability of life arising on a planet if life arises at a rate of about once per galaxy. Probability of life on a randomly selected planet if life arose only once in the universe. Label these three points respectively the Solar System Number, the Galaxy Number and the Universe Number. Remember that there are about 10,000 million galaxies. We don't know how many solar systems there are in each galaxy because we can only see stars, not planets, but we earlier used an estimate that there may be 100 billion billion planets in the universe.

When we assess the improbability of an event postulated by, for instance the Caims-Smith theory, we should assess it, not against what we subjectively think of as probable or improbable, but against numbers like these three numbers, the Solar System Number, the Galaxy Number and the Universe Number. Which of these three numbers is the most appropriate depends upon which of the following three statements we think is nearest the truth:

These three statements represent three benchmark views about the uniqueness of life. The actual uniqueness of life probably lies  somewhere between the extremes represented by Statement 1 and Statement 3. Why do I say that? Why, in particular, should we rule out

a fourth possibility, that the origin of life is a far more probable event than is suggested by Statement 3? It isn't a strong argument, but, for what it is worth, it goes like this. If the origin of life were a much more probable event than is suggested by the Solar System Number we should expect, by now, to have encountered extraterrestrial life, if not in (whatever passes for) the flesh, at least by radio.

It is often pointed out that chemists have failed in their attempts to duplicate the spontaneous origin of life in the laboratory. This fact is used as if it constituted evidence against the theories that those chemists are trying to test. But actually one can argue that we should be worried if it turned out to be very easy for chemists to obtain life spontaneously in the test-tube. This is because chemists' experiments last for years not thousands of millions of years, and because only a handful of chemists, not thousands of millions of chemists, are engaged in doing these experiments. If the spontaneous origin of life turned out to be a probable enough event to have occurred during the few man-decades in which chemists have done their experiments, then life should have arisen many times on Earth, and many times on planets within radio range of Earth. Of course all this begs important questions about whether chemists have succeeded in duplicating the conditions of the early Earth but, even so, given that we can't answer these questions, the argument is worth pursuing.

If the origin of life were a probable event by ordinary human standards, then a substantial number of planets within radio range should have developed a radio technology long enough ago (bearing in mind that radio waves travel at 186,000 miles per second) for us to have picked up at least one transmission during the decades that we have been equipped to do so. There are probably about 50 stars within radio range if we assume that they have had radio technology for only as long as we have. But 50 years is just a fleeting instant, and it would be a major coincidence if another civilization were so closely in step with us. If we embrace in our calculation those civilizations that had radio technology 1,000 years ago, there will be something like a million stars within radio range (together with however many planets circle round each one of them). If we include those whose radio technology goes back 100,000 years, the whole trillion-star galaxy would be within radio range. Of course, broadcast signals would become pretty attenuated over such huge distances.

So we have arrived at the following paradox. If a theory of the origin of life is sufficiently 'plausible' to satisfy our subjective judgement of plausibility, it is then too 'plausible' to account for the paucity of life in the universe as we observe it. According to this argument, the theory we are looking for has got to be the kind of theory that seems implausible to our limited, Earth-bound, decade-bound imaginations. Seen in this light, both Cairns-Smith's theory and the primeval-soup theory seem if anything in danger of erring on the side of being too plausible! Having said all this I must confess that, because there is so much uncertainty in the calculations, if a chemist did succeed in creating spontaneous life I would not actually be disconcerted.

We still don't know exactly how natural selection began on Earth.

This chapter has had the modest aim of explaining only the kind of way in which it must have happened. The present lack of a definitely accepted account of the origin of life should certainly not be taken as a stumbling block for the whole Darwinian world view, as it occasionally - probably with wishful thinking - is. The earlier chapters have disposed of other alleged stumbling blocks, and the next chapter takes up yet another one, the idea that natural selection can only destroy, never construct.